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Abstract—In this paper the finite amplitude analysis is done for the 
double diffusive free convection of Maxwell viscoelastic fluid in a 
porous medium in the presence of temperature gradient (Soret 
effects) and concentration gradient (Dufour effects) under LTNE 
model is investigated. The normal mode analysis is adopted for the 
linear stability analysis. The nonlinear analysis using a truncated 
representation of Fourier series considered only for two terms. The 
heat and mass transport phenomena is also depicted in this work. 
Graphical representation of physical parameter is also given in this 
paper.  

1. INTRODUCTION 

Double diffusive convection in a horizontal layer of Maxwell 
viscoelastic fluid in a porous medium in the presence of 
temperature gradient (Soret effects) and concentration gradient 
(Dufour effects) is investigated. For the porous medium Darcy 
model is considered. A linear stability analysis based upon 
normal mode technique is used to study the onset of 
instabilities of the Maxwell viscolastic fluid layer confined 
between two free-free boundaries. Rayleigh number on the 
onset of stationary and oscillatory convection has been derived 
and graphs have been plotted to study the effects of the Dufour 
parameter, Soret parameter, Lewis number, and solutal 
Rayleigh number on stationary convection. The finite 
amplitude analysis is also done in this work for the flow 
stability  

Non-Newtonian fluids have been a famous topic of research 
for their diverse use in many industrial processes, such as 
polymer solutions, blood, and heavy oils. These fluids have 
been modeled in a number of diverse manners with their 
constitutive equations varying greatly in complexity, among 
which the viscoelastic Maxwell fluid model has been studied 
widely[1–3]. The Maxwell fluid has achieved some successes 
in describing polymeric liquids, in which case it is more 
amenable to analysis and more important to experiments. The 
relaxation and retardation functions were determined for the 

four-parameter Maxwell model by Friedrich[4]. Song and 
Jiang[5] used the fractional calculus to analyze the 
experimental data of viscoelastic gum and obtained 
satisfactory results.  

Qi and Xu[6–7] considered Stokes’ first problem and some 
unsteady unidirectional flows for a viscoelastic fluid with the 
generalized Oldroyd-B model. Zheng et al.[8–9] considered 
some MHD flows of the generalized viscoelastic fluid. Shen et 
al.[10–11] studied the decay of vortex velocity and diffusion 
of temperature in a generalized second grade fluid and a 
Reyleigh-Stokes problem for a heated generalized second 
grade fluid with the fractional derivative. Recently, some new 
energy constitutive equation models have been proposed by 
Ezzat[12]  

2. MATHEMATICAL FORMULATIONS OF THE 
PROBLEM 

Consider an infinite horizontal layer of Maxwell viscoelastic 
fluid of thickness “ ,” confined between the planes  = 0 and 
 =  in a porous medium of porosity  and medium 

permeability 

 1 and is acted upon by gravity g(0, 0, − ). This layer of fluid 
is heated and soluted in such a way that a constant temperature 
and concentration distribution is prescribed at the boundaries 
of the fluid layer. The temperature ( ) and concentration ( ) 
are taken to be  0 and  

0 at  = 0 and =1 and  be the difference in temperature and 
concentration across the boundaries. 

Let q( , V, ), , , , , , , , , and  be the Darcy 
velocity vector, hydrostatic pressure, density, temperature, 
solute concentration, coefficient of thermal expansion, an 
analogous solvent coefficient of expansion, viscosity, thermal 
diffusivity, and solute diffusivity of fluid, respectively. 
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2.1. Assumptions 

The mathematical equations describing the physical model are 
based upon the following assumptions. 

(i) Thermophysical properties expect for density in the 
buoyancy force (Boussinesq hypothesis) are constant. 

(ii) Darcy’s model with time derivative is employed for the 
momentum equation. 

(iii) The porous medium is assumed to be isotropic and 
homogeneous. 

(iv) No chemical reaction takes place in a layer of fluid. 

(v)The fluid and solid matrix are in thermal equilibrium state. 

(vi) Radiation heat transfer between the sides of the wall is 
negligible when compared with other modes of the heat 
transfer. 

2.2. Governing Equations 

According to the works of Bhatia and Steiner [14, 15], Sharma 
and Kumar [16], and Chand [19–21] the appropriate governing 
equations for Maxwell viscoelastic fluid in a porous medium 
are 

. 0  (1) 

1 	 0 (2)  (2) 

	 . T εk T h T
T   (3) 

1 1 k T h T T   (4) 

q. C 	 	 ,  (5) 

1 T T C	 C 	  (6) 

where	 , ,  is the Darcy velocity,  is the pressure,  

is the acceleration due to gravity,  is the viscosity,  is the 

relaxation time,	  is the density while  and  are the 
permeability and porosity of the medium, T and C are the 
temperature and concentration, respectively 

Where  is Soret coefficients ;	 /  is 

the thermal capacity ,Where is the volumetric heat 
capacity of the fluid and

	is the volumetric heat capacity of the saturated 
medium as a whole, with the subscripts , , 	 	denoting 
the properties of the fluid, solid, and porous matrix, 
respectively.  is solutal diffusivity of the medium	  are 
Soret coefficients.  and  thermal and solute expansion 
coefficient in the medium. 

We assume that temperature and concentration are constant at 
the boundaries of the fluid layer. Therefore, boundary 
condition are 

0, 	, 	 		 	 0 

0, 	, 	 		 	  (7) 

2.3 Steady state and its solutions. The steady state is given by 

0, , ,
	 	 0,0,0 	, , ,
	 , , 0   (8) 

The basic state temperatures and concentration satisfy the 
equations 

0	, 0	, 0	 (9)  

with boundary condition 

 and 	 	 0 

 and 	 	  (10) 

so that the conduction state solutions are given by 

∆ ,  (11) 

∆   (12) 

2.4 Perturbation Solution 

To study the stability of the system, we superimposed 
infinitesimal perturbations on the basic state, which are of the 
forms. 

0 , 	 ′ , 	 ′, C ,
, ,  (13) 

where the prime denotes the perturbed quantities. Substituting 
(13) into (1-6) and neglecting higher order terms of the 
perturbed quantities, we obtain the equations governing the 
perturbations in the form 

. 0  (14) 

1 ′ T′ C′
	

0 (15)  

	
′
	 ′. T′

	
′

	

	

εk T′ h T′ T′   (16) 

1
′

1 k T′ h T′ T′   (17) 

′

. C′ ′ ∆ ′ 	C′ 	 ′,  (18) 

By operating curl twice on Eq. (15), we eliminate  from it 
and then render the resulting equation and other equations 
dimensionless using the transformations and non dimensional 
parameters 
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3. NORMAL MODES AND STABILITY ANALYSIS 

Analyze the disturbances into the normal modes and assume 
that the perturbed quantities are of the form 

T
T

in	
Θcos
Φcos	
Σcos	

sin  

(19) 

where 	,  are wave numbers along  and  directions, 
respectively, and  is growth rate of disturbances. Using (19), 

1

0

	

	
0
	

	

0

	

	0
	0

		

	 Θ
Φ
Σ

0
0
0
0

 

(20) 

 

Substituting solution (13) in (11), integrating each equation 
from  = 0 to  = 1 by parts, we obtain the following matrix 
equation as 

The nontrivial solution of the above matrix requires that 

 (21) 

It is clear from (21) that stationary Rayleigh number Ra is a 
function of dimensionless wave number , Soret parameter  
, Lewis number Le and solutal Rayleigh number Rs, and 

independent of stress relaxation parameter. Thus for stationary 
convection the Maxwell viscoelastic fluid behaves like an 
ordinary Newtonian fluid. 

4. FINITE AMPLITUDE STEADY CONVECTION 

In this section we consider the nonlinear analysis using a 
truncated representation of Fourier series considering only two 
terms. Although the linear stability analysis is sufficient for 
obtaining the stability condition of the motionless solution and 
the corresponding eigen functions describing qualitatively the 
convective flow, it cannot provide information about the 
values of the convection amplitudes, nor regarding the rate of 
heat transfer. To obtain this additional information, we 
perform the nonlinear analysis, which is useful to understand 
the physical mechanism with minimum amount of 
mathematical analysis and is a step forward towards 
understanding full nonlinear problem. There is a large body of 
literature available on the finite 

amplitude thermal convection in porous medium with local 
thermal equilibrium condition for both single and two 
component systems .The method proposed by these authors 
has been adopted here in this paper to study the effect of local 
thermal non-equilibrium on double diffusive convection in a 
porous layer. A minimal double Fourier series which describes 
the finite amplitude steady-state convection is given by 

sin sin  

cos sin sin	 2  

cos sin sin	 2  

cos sin sin	 2  (22) 

where the steady-state amplitudes A, Bi ’s are constants and 
are to be determined from the dynamics of the system. 
Substituting Eqs. (22) into the steady part of coupled nonlinear 
system of partial differential equations (20) and equating the 
coefficients of like terms we obtain the following nonlinear 
system equations 

0 (23) 

0  (24) 

2 4 2 0  (25) 

0 (31) 

4 0   (26) 

0   (27) 

	 0  (28) 

The steady state solutions are useful because they predict that 
a finite amplitude solution to the system is possible for 
subcritical values of the Rayleigh number and that the 
minimum values of  for which a steady solution is 
possible lies below the critical values for instability to either a 
marginal state or an overstable infinitesimal perturbation. 

Elimination of all amplitudes, except , yields 

	

0 (29) The solution 0 

corresponds to pure conduction, which we know to be a 
possible solution though it is unstable when  is sufficiently 
large. The remaining solutions are given by 

	 	4 	   (30) 

When we let the radical in the above equation to vanish, we 
obtain an expression for finite amplitude Rayleigh number 

, which characterizes the onset of finite amplitude steady 
motions. The finite amplitude Rayleigh number can be 
obtained in the form 
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	 	4 	   (31) 

5. RESULT AND DISCUSSION 

An analytical study of linear and nonlinear double diffusive 
convection in a horizontal fluid-saturated sparsely packed 
porous layer is carried out by considering a thermal non-
equilibrium model. The onset criterion for both marginal and 
oscillatory convection is derived using the linear theory. The 
expression for finite amplitude Rayleigh number is derived 
analytically using minimal representation of the Fourier series. 
The effect of solute diffusion, and thermal non-equilibrium on 
the stability of the system is investigated. It is found that in 
most of the situations the instability sets in via finite amplitude 
motions, prior to the stationary or oscillatory convection.  

The variation of the critical Rayleigh number, wavenumber 
and frequency of oscillations with H for different values of 
Vadasz number is unveiled in Figs. 1a–c. We observe from 
Fig. 1 a that the oscillatory critical Rayleigh number decreases 
with increasing Va. The effect of Vadasz number is therefore, 
to advance the onset of double diffusive convection, in 
oscillatory mode. In Fig. 1b we display the effect of Vadasz 
number on the oscillatory critical wavenumber. This figure 
indicates that the critical wavenumber a Osc c for oscillatory 
mode increases with Va. It is clear from Fig. 1c that the 
critical frequency increases with increasing Va.  

Figure 2 a–c displays the effect of the Darcy number on the 
critical Rayleigh number, wave number and the frequency of 
the oscillations. Figure 2a indicates the effect of Darcy 
number Da on the critical Rayleigh number. We find from this 
figure that when Da is very small, i.e. in case of a densely 
packed porous medium, the finite amplitude motions occur 
prior to the oscillatory motions for small to moderate values of 
the interface heat transfer coefficient H, and for large H, 
convection sets in first as oscillatory mode. The fairly large 
Da (≥0.1) dampens the finite amplitude motions and the 
overstable mode becomes the most dangerous mode in such 
case. The critical Rayleigh number for stationary, oscillatory 
and finite amplitude convection is found to decrease with 
decreasing Da. The size of Da is related to viscous effects at 
the boundaries, and reduction in Da decreases this effect, 
which allows the fluid to move more easily, thereby 
decreasing the critical Rayleigh number. Figure 2b indicates 
the variation of critical wavenumber with H for different 
values of Da. We observe from this figure that for 
intermediate values of H the critical wavenumber for each of 
the stationary, oscillatory and finite amplitude modes attains 
the maximum value and decreases with increasing Da. 
However, the small and large H has no influence on the 
critical wavenumber. Figure 2c show the effect of Darcy 
number on the amplitude of the oscillations. We find that the 
effect of increasing Da is to decrease the amplitudes. In the 
study of double diffusive convection the determination of heat 
and mass transport across the layer plays a vital role. Here, the 
onset of convection as the Rayleigh number is increased is 

more rapidly detected by its effect on the heat and mass 
transfer.  

6. CONCLUSIONS 

The linear and nonlinear double diffusive convection in a 
horizontal fluid-saturated sparsely packed porous layer is 
investigated analytically when the fluid and solid phases are 
not in LTE. We have analyzed in detail the combined effects 
of boundary and LTNE on the onset of double-diffusive 
convection in a porous layer. In case of linear theory the 
thresholds of both stationary and oscillatory convection are 
derived as the functions of solute Rayleigh number, inter-
phase heat transfer coefficient, Lewis number, porosity 
modified conductivity ratio, Vadasz number, diffusivity ratio 
and Darcy number. The nonlinear theory predicts the 
occurrence of finite amplitude motions. We found that there is 
a competition between the processes of thermal and solute 
diffusion that causes the convective instability to set in as 
oscillatory and finite amplitude mode rather than stationary. It 
is found that for both large and small inter-phase heat transfer 
coefficient the system behaves like a LTE model while the 
intermediate values have strong influence on each of 
stationary, oscillatory and finite amplitude modes. The 
presence of a stabilizing gradient of solute will inhibit the 
onset of double diffusive convection. The magnitude of Da is 
related to the importance of viscous effects at the boundaries, 
and reduction in Da decreases this effect, thereby decreasing 
the critical Rayleigh number. The effect of porosity modified 
conductivity ratio, Vadasz number, is to enhance the 
instability of system. Each of the parameters RaS, H, γ, Le and 
Da increases the values of Nu and Sh. 
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Figure 1 The variation of the critical Rayleigh number, 
wavenumber and frequency of oscillations with H for different 

values of Vadasz number 
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Figure 2 Variation of critical values of Rayleigh number, wave 
number and the frequency for different values of darcy number. 


